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1 NonIi mea effects oI taorces ot li dea- medium .lnl ,11 I l Ii, t a .i re, in Ieneri ,

'overned h%. the l Presele t ;Isnrt; i ot discant inni v t t he tAn, ent iaI componInts of

th ye l wi tv. Iithin an accuracy , of the order t , these Ct etels can be tlund by the

method of planLe sect i ns lHere I is the an I,,e 'd i ,Ii dlen , is t ie aspe t rat io.

varies wit hi i t he I m its:

II -7 ,: , Il-I)

where ' is a constant.

By virtne at (I-I), 12 _ , which makes it possible, in calc lation, to replace

sin bv -, . The problem ,oncern in.; tlie utovelent o it rec'taLngI lar wing comes down to

one of finding aI plane, non-steady separated flow of an ideal I iquid about a plate

instantaneously brought into motion along its normal, wi th a velocity v Thereupon,

the following relationship arises:

\ = v , tV = h , (1-2)

where v is the velocity of motion of the plate; h is tie distance between the leading

edge of the win and the plane of the section of the wing normal to the flow; V is the

ve!ocitv at infinity; t is tile time elapsed from the moment of the start of the motion

oIf particles of the medium in the given section.

The case tf naol- t eady movement of a rectangular wing also reduces to this plane

prohl m ',hen the wing is momentarily brought into motin with a c'onstant velocity V

It is the time elapsed from the start of the wi ng mot ion, and h 0  is the chord

V. 0
g-h

V ... for 0 <h <V~

= . (1-3)

LO  for V t ' h < h0

Then, as before, t is the time elapsed from the start of moveme-nt of particles of the

medium in the given section.

If the wing is placed in a shock tube, and if t0  is the time elapsed from the

start of movement of the particles of the medium near the leading edge of the wing, then

for the sections:

0 < h ' Vto t V , (I-4)

while, in sections Vt t " h ! h , motion is absent. it fact, in the vicinity of

IT = V_ t 0 , there is a transition zone. However, its reject ion leads to an error of the
.2

same order, I'

The solution of the two-dimensional problem makes it possihIe to find the drag force

oi the plate Y(t) . This force is nmerical lv equal to tilie normal force acting oil a



sma I 1 part of t he wing i ncided between sect ions h and I + h , re I at ive to t he

distance between the sect ions 'h . There Iore , the fo l lowing expressions are obt a i ned Ior

the lift coefficient c and for the moment coefficient M , relative to the leading-y z
edge.

CJ Ydh >1 = -__

S - v2 S . • hYdh , (IC

where Y must be expressed in terms of h , V and t

In practice, it is more convenient to use the impC se D( t) instead ot the force

t 0

DCC ( dt (1-6)

Thus the problem of investigation )f the characteristics of the wing u mid M reducesy z

to the determination of the impulse D( t) as a function of the time, for tht two-

dimensional case of non-steady separated flow of a plane flow of an ideal liquid a round a

plate.

2 If the surfaces of tangential discontinuity formed near tie Cdg, of the plate are

known, then the velocit- field can be found according to known formulae. Therefore, the

problem of finding Dt) comes down to finding these surfaces.

The equations of motion for surfaces of tangential discontinuity can he written il

the following i.rm:

dwt-U(:,t) + (v:",t)) = -dC2-1)

W(7,t) , 7 > 0 , 0 (t) (2-2)

I m( U 7 0 , t) + < ( ( 0 , t )) )  = J

Here W is the point of the complex plane lying at the surface of the discontinuity; '_

is the potential jump at point W ; F0  is the potential jump at the edge of the plate;

t' U the complex velocity of the non-separated flow of the stream v /i about the plate,

directed towards the plate along the normal; V is the complex velocity induced by

discontinuities in the presence of the plate (discontinuities adjoin its edges); (V) is

the half-sum of the values V , calculated for both sides of the discontinuity at the

point W . The superior asterisk denotes a complex-conjugate value.

The derivative in the right-hand part of (2-1) applies for the condition = const.

Equation (2-I) is obtained on the basis of the known properties of a tangential discontin-

uity, its impermeability and the absence of a pressure jump. Equation (2-2) is obtained

on the basis of Zhukovskii's postulate. The systems (2-1) and (2-2) are complete in that

they contain the functions W(F,t) and I'0 (t) , but they must be supplemented by a



relationship between W( , t and the functions 1 and (V lhis relat ionship is

conveniently founld by introducing the auxiliary comp lex plane z . Without destroying the

generality, it is possible to consider the half-width of the wing as being equal to unity,

and the edges as lying at points I+ and -1 in the complex plane W . Then z is

defined by the function:

W = .1 + z 2 (2-1)

mapping the exterior of the segment (-I, +t) of the plane z on the exterior of the

segment (-i, +i) of the plane W .

The relationship between W(Y,t) and U, W(r,t) and (V) is given by the follow-

ing expressions:

dz (VI (v) dz (2-4)

'0

u - (v) = I _ d' Id (2-5))-2 z - z,-

0 0

Hirc the iii-ricr asterisk indicates a dependence of the given function on the variable of

i nt cra t itoll.

The expression for D(t) is obtained on the basis of formulae in Ref 2:

D = 7v + AD , (2-6)
n

0

D = 2PRe j z*d." (2-7)

U

Let us hange to new variables. Let us suppose that:

s =v t , v , F= -0. 0 W 1 (2-8)n1 0 n
"0

Moreover, in order to abbreviate the writing of functions, 1" and z will be given a

supplementary definition for the case of negative values of . , in accordance with the

following expressions:

i(-) = '(w) , z(-W) = -z (,) (2-9)

In terms of these variables, the equations of motion take the following form:

,..



b!

p(O) - p(z)lE + (I _ . !. iL _ pI) 0' ' S 'S 2
+1 + , . +(2-10)

p(z) = I' p(O) = -p'--- = lz~ l

*d +z 2
-J -

27 p(O) , (2-1 )

+1

= V Re j z*d, (2-12)

-1

where = () = I for 0 and -I for ,, < 0 . The problem reduces to the

solution of system (2-10) ind the introduction of results in (2-11) and (2-12).

3 Let us investigate the principle of finding the solution.

Let the solution of a certain physical problem reduce to the solution of the

operator equation:

Fz 0 , z = z( ,s) , (3-1)

which, by assumption, has a unique solution, and this solution can be represented in the

following way:

z a
n , an (w), n(S) (3-2)

o.: "vy' ujr~'. n n., n n

0 ,(3-3)
n

0 for s- 0 , (3)
n

I (3 for s C , n O, 1,2... . (3-5)
On

It is necessary to find the functions n (s) . In the general case, for this purpose

equation (3-I) must be solved. However, if the operator F has certain special proper-

ties and if, frow physical considerations, one can obtain additional restrictions on the

desired solution z , then the function $ can be found even without the direct solution
n

of (3-1).

Let us consider the case when the operator F has the following three properties.

(I) For any function of z which can be represented as in (3-2) to (3-5) and which

belongs to a certain acceptable region of definition, the expression Fz can be written

in the following form:
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z Z (A a)( ) ; 11-6)

11=0

here a and are infinitely-dimensioned vectors with the coordinates a arid

respect ielv; A and : 1are certain operators acting on a and We observe that.,

using only tluk condition (3-5), it is not possible to place the expressions : 1 as.,

function of s in increasing order. It is not, for example, possible to compare the

Orders of the functions 0 nd "od o/ds . However, in expression (3-6) there arc a lso

terms which can be arranged in an order relationship established on the basis of

conditions (3-5).

(2) If, using conditions (3-5), aiiv term of (3-6) having a higher order than some other

term in the latter expression is rejected, then only a finite number of terns depending

solely on a0  and t0  remain.

For the sake of simplicity, let us consider that only two terms remain. Let us call

this residue the dominant part (DP):

D11(Fz) = (Al a o) 0) + (A 2a )( : ) . (3-7)

(3) The dominant part of the increment Fz - F(z - zk) , where:

zk = an n  , (3-8)

n=k

also consists of a finite number of terms, each of which depends only on ao I a k ' '0

:k * Here the dependence on ak k is linear, and the operators determining this

dependence are independent of k . Accordingly, we shall investigate the case when tile

dominant part of the increment consists only of two terms:

DP(Fz - F(z - zk)j = (A;(ao)akl (Ok + (A2(ao)ak 2(Ok (3-9)

Depending on the vector * , in the expression (3-7), the dominant term will be either

the first, or the second, or both terms will have the same orders. The expression (3-6)

may similarly equal zero only in the case when the sum of each one of the dominant terms

is separately equal to zero. Therefore, a0  can satisfy one of the following equations:

la = 0 , (3-10)

0
,,A a 0  = 0 , (3-li I)

.2
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0( lf ) (b 'Oc) 0lc s' 0 1(3- 12)

It is possible to giv, preference to One of the equat ins (3-10), (1-I ) or (1- 1 r )

oi the basis of additional restrictions oi the so Iut ion z ohtained trm physical I onsid-

trat ions. In the g i'en V aLset , the cond it i o on a in ique sO 11t iOi is siIff i i 1ent t0 jUst i fy

rL'C t ion f equati o s (i-I () .ILd (3-11), sinve they do Tot 1 ete.rmin the nI1 Ctin "

In the third case, however, i unique solution is possiblte.

If 13-7) were to consist o1 n terms, then it would be necessary t investigate

2 - I equations. Functions a ' a r 111-C found in a similar manner. It is sufficient

merely to carry out a subst ituition o I the vari.bles z = a 0 : 0 + z , where z is

determined by the sum ( 3-8) , and to requ ire that the dominant member of the expression

Fao0  + 7 1 ) = o . Thus:

F(ao 0 + Z) = F(ao o) + (F(ao0 * + - F(ao)1 (3-13)

and, as soon as a 0  and *0 are known, then the dominant member (DM) of the first term

can be picked out directly. Moreover, by virtue of (3-12), its order is higher than zero.

Taking condition (3-6) into consideration, let us suppose that:

DM[F(ao0I )) = B I (a o),1 ( ,0) . ()-IA)

From the expressions contained in brackets in (3-13) we preferentially take out the

dominant part. Takircg (3-9) into consideration, we obtain:

DPrF(a0 :0o  + z ) - Faoo) )  = A I n, ( a I  "I t 
)  \ i i)l ' ;("0): (I-13)

If a0 t 0 is not the solution of problem 3-I), then BI (a ) 0 and consequently, the

order of (3-14) cannot be less than the ,rder of the terms in (3-15). OiT the other hand,

none of the terms in ( 1-15) can have an Order Ic ss than that of (3-1 ), since, in such a

case, for a I  the trivial solution .,aI  (I) would be found. One of the following three

systems of equations is possible for a I

B (a + c A (a 0)a T 0o

(3-16)

0 :1 i () = c = cnst.
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B (a ) + c 2 A( } =

(3-)7)

(A a ) I + c'- a = a t 0

1 0

(:' :o ,:1 (:o = iC const .
B1 iah) + ' (aa I+j(A(a0)a I-

, ): 1)/ 1 0

c:" )':1I "/. 1 ) c I Co Sn t.

System (3-16) or system (3-17) can be rejected if its solution is such that the expressions

'( ) and :' 1  have equal orders.
I . 2 o)10 I

Let us suppose thIat all val ucs of a , are found up to the number n = k - I

tse wr i te

k-I
= = k- (3-19)

n -0

k-I

Then z + / ' . Rt t i ng the i I ulation, we obtain:

, k I I f-
k-I + A' " k 0

(3-20)

I.! k-I+ = I = 4
(3-21)

, [ ¢ k-1 2
' ' : I) k  

/ "k ) k  const.

(I I; K k

k-I "2~ )a,- ( ) 0B kk- + k A; ( 0 k k 0k

k - ) Ik = _onst (3-22)

I, :;( . ,k/.k(k ) 2

c = St.

0e k-I a kk-I

where a and are vectors with the coordinates a n ; ( 0 n 0 k - In
k- k-Ik-

B (a k-1 ) k1( ) is the dominant member of the expression Fzk -
I

k *k

Systems (3-16) and (3-17) can be rejected on the basis of the same considerations.



i. . .['e ~ pa~ io (-2) under the, conditions o,1 (k)- ) anod I, ,i i I . ,

i s unique . it two lunlctiois co~inc idep to the( desired, etxtenqt for the, N.] sm l i zin,.,

0 . s _ t > 0, then both they and their expdisions 'i duil over the whol r ,t ,,t the

leterminat ion.

It is sufficient, therelore, that the properties 'f suh-[iTitS (1) to (3) shUld be

maintained mere ly or small values of s .

The properties of sub-points (2) and (M) are directly asso iated with the
4

existenee of the Fr&chet derivative ,f the operator F . If, for exampie:

'(z' + z") = Fz' + F'(z')z" + "(Wz") -2'i)

where F' z') is a linear uniform operator depending on z (Fr6chet derivative), then

the properties ot (1-7) and (2-8) are maintained if:

F'(z,)z"or , j)" Zl , , - , s - ( . (3-24)1lintF' (z')r' fF )z""I c ' '2Ci--

Thereupon t he following formiulIae are vol id:

DIP Fz = D' a(0 , (3-25)

' 0 ' (3-26)rDPFvz - F(z - D)-- IP(F'(a(Ti )ak0 (k-26

Applyi nk the above considerations to equation (2-I0), let us first of all formulate

additional restrictions of a physical character:

(I) the absence of selF-intersection of the tanvential discontinuity:

Z( ,1s) - z( 2,s)l ,n) > / zl,''= 0 -I)

(.i for '.; n O : 006'cc ,,cr o' :n.•  
z'- ... .':. " (;-.) i (:-".)

where Ik W ) is a certain function;

NO, ) W2 0 for .I A 2 ;

(2) the boundedness of the velocitv jump at the tangential discontinuity:

z(W,s)1 > 0 (4-2)

where c' is a certain constant;

(3) the boundedness of the total circulation:

• -. (4-3)

(4) the tangential discontinuity sprirgs from the edge:
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Z(O,s) = 0 ; (4-4)

(5) moreover, we suppose that the series:

da z (45)
rl=O

converges uniformly with respect to

From (4-1), (4-2) and (4-5) it follows that for any values of ,

l(u lS) - zl( 2s)

lim I 0 for s 0 (4-6)o a 0 (G )  1 0oao0 ( ;2 )

Therefore, for small values of s

0(* a)' Z(0 %( W*) a a0u) + )
+ z ( I, (,s) - zI(Ws))k}

z( ,s)- z ,s ¢oao)(w* ) -a0(w) t 0 (ao( ,_a(w))-

0 k[I z0,,) J I 047

This makes it possible to write p(z) in the form (3-6). An analogous result is

obtained for the operator E , and, consequently, for all the left-hand side of equation

(2-10). The properties (3-7), (3-8) of the left-hand side of (2-10), written in the form

(3-6) can be directly verified. Here formulae (3-25) and (3-26) may be used. Denoting

by the symbol F the operator included in the left-hand side of (2-I0), we obtain:

DlP Fz = 11 6,d f a+ - 1 - W) da0 + ao) ji 6* d  (4-8)

i1 0 1 \0 1. / 0

As in the case of point (3), we obtain three equations, two of which can be rejected not

only on grounds of the conditions of uniqueness. For example, let us look at the

equation:

daO 16d
W) _ + a - = 0 (4-9)a ( dw 0

By virtue of (4-3) and (2-I),

4wo
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+I

-a10* * o

therefore (I - w) a0 + a0  = 0, = c (I -const.

which contridicts condition (4-4). (.:U]n;r' o!- mk. ,m,, ,' ' ' h"P' 1,.

The second equation:

+l +l

I - + 0 (4-10)

has the following solution:

a = c o 2,. - *2

which does not satisfy condition (4-2), since 'a o/ = 0 for w = I . In this way, if

a solution of the problem in the form (3-2) exists, then a0 0  satisfies the system-35

(3-12). In so far as %1o = 3 e.'ditor's note: the ori'ainaZ has ( and

P200 = ,/10 , then, for 0  we obtain:

2 0 0 )

o c1 ,= (3c s)3

where 0 do/ds .

Since the constant factor associated with i0 is insignificant, then, for
0 0

definiteness, it is possible to take c, = , which by virtue of (3-12) unambiguously

determines the equation for a0

Transferring attention to the desired ' 2... ,k we first obtain:

DPFz zk k* ak - ak* 6 ,d

DP(Fz - F(z - Zk)) 4 [0 2 d + J a 0  a 0*

da 0 da * -1

/ 2 ak 1 6 * d wI + 1 6 d

210* -I-

k da0 a 6 6,dw 1k 1"

+ I - ) dk* ak1P ow 2 kJ-
a0* -I

......(4-12)



S ince :O t h01 Wi th an 1WcLura, v of up to t he v1.i I o 1 1st 11L mu I t i p 1 icr of t lie

function ' - is eq ual to the f unt ion I/ n there ore we have the situation

described in point (3). Thus:

* '
Ok, 2 k

Extracting the dominant member from the expression F( , hearing in mind equation

(3-12) and the function 0= s3  1 we obtain:

F I sfl - (-- Pao) '2iRe
d .,a

0DP F~aS Jr  = s- y 3--ea
o-ao* -1 o- a O  '

Thus, , 1 0 = s 3 
. Investigating the systems (3-16) to (3-18) according to

principles laid down in point (3), the first two systems can be rejected. From the third

system, with an accuracy of up to the value of a constant multiplier, we obtain:

t I(s) = s . (4-13)

Applying the method of mathematical induction for , we find:

(kk(S) ( k = 0,1,2..... (4-14)

Introducing the result found into (2-11):

S n(2n+l)/3 ' n = const. (4-15)

n=O

From (2-12), it follows that:

2n /3= v n s D n = const. (4-16)

n=1

Using (4-16), (1-2), (1-5), (1-6) and (2-7), we obtain:

C = aA7/2 + aA Z Dn(2a/A) 2n/3

n-il

(4-17)

N = _2n )2n/3-CO Dn(2nh/,.aZ 2n + 3n

-I _ Jn~'l

--I•
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For non-steady flows, we use I -3) and (-4); acrordingly, we obtain c , M and
V Z Y

N .
z

A i/2 1 ~ 1 [-4 1t D (2i 2n /3

n=] (4-18)

=m 2n + n .- A D
2n /

3
z 2n+ 30

y= '/2 + 2O D n0(2a / )n=

(4-19)

2n D (2cP/A)2 n / 3 
, = toV/hM'z =2ir A V /_h n' • '

0= I

In order to find the coefficients D , it is necessary to solve the equations for
n

a in systems (3-12) and (3-22). However, since, when one uses numerical methods with the

application of the regularisation principle 
5
, there occurs a convergence not only in the

case of the desired functions, but also in the case of all their derivatives, then the

coefficients D can be found by means of a treatment of the results of the numerical
0

calculation of the initial problem ((2-I) to (2-5)). In Fig I is shown the dependence,
5 I

found by the numerical calculation of the initial problem, 3f Ac ci 3 3 as a function
y

of 2xX .

It is nULceable that, at point 0 , there is a vertical tangent. This same

quantity, as a function of (2/) i does not have a vertical tangent and, in the interval

(0,I), it can, with a high degree of accuracy, be found approximately using the following

polynomial (cf Fig 2):

Y = 3.61 + 1.20F - 0.55 2 - 325
3  

= (4-20)

The coefficients of this polynomial determine the first four coeficients D nn

D, = 4.55 , D2 = 1.56 , D, = -0.692 , D4 = 0.314 . The constant c0  in the formula of

A.A. Nikol'skii is numerically equal to the first coefficient of the polynomial (4-20).

A comparison of results of the calculation and of experiment is given in Ref 5.

In conclusion, two observations may be made.

Equation (4-10) corresponds to the case when, in the flow, the pressure is admitted

of a point force applied to the end of the tangential discontinuity. Thereupon, the

function 00 can be determined if one defines the law of change of this force. 0

0
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